Numerical method for solving stochastic differential equations with dichotomous noise.

نویسندگان

  • Changho Kim
  • Eok Kyun Lee
  • Peter Talkner
چکیده

We propose a numerical method for solving stochastic differential equations with dichotomous Markov noise. The numerical scheme is formulated such that (i) the stochastic formula used follows the Stratonovich-Taylor form over the entire range of noise correlation times, including the Gaussian white noise limit; and (ii) the method is readily applicable to dynamical systems driven by arbitrary types of noise, provided there exists a way to describe the random increment of the stochastic process expressed in the Stratonovich-Taylor form. We further propose a simplified Taylor scheme that significantly reduces the computation time, while still satisfying the moment properties up to the required order. The accuracies and efficiencies of the proposed algorithms are validated by applying the schemes to two prototypical model systems that possess analytical solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations

In this article, a new numerical method based on triangular functions for solving  nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

Application of new basis functions for solving nonlinear stochastic differential equations

This paper presents an approach for solving a nonlinear stochastic differential equations (NSDEs) using a new basis functions (NBFs). These functions and their operational matrices are used for representing matrix form of the NBFs. With using this method in combination with the collocation method, the NSDEs are reduced a stochastic nonlinear system of equations and unknowns. Then, the error ana...

متن کامل

Numerical solution of nonlinear SPDEs using a multi-scale method

‎In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets‎. ‎The method combines implicit collocation with the multi-scale method‎. Using the multi-scale method‎, ‎SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain‎. ‎The stability and c...

متن کامل

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006